Transcriptional comparison of the filamentous fungus Neurospora crassa growing on three major monosaccharides D-glucose, D-xylose and L-arabinose

نویسندگان

  • Jingen Li
  • Liangcai Lin
  • Huiyan Li
  • Chaoguang Tian
  • Yanhe Ma
چکیده

BACKGROUND D-glucose, D-xylose and L-arabinose are the three major monosaccharides in plant cell walls. Complete utilization of all three sugars is still a bottleneck for second-generation cellulolytic bioethanol production, especially for L-arabinose. However, little is known about gene expression profiles during L-arabinose utilization in fungi and a comparison of the genome-wide fungal response to these three major monosaccharides has not yet been reported. RESULTS Using next-generation sequencing technology, we have analyzed the transcriptome of N. crassa grown on L-arabinose versus D-xylose, with D-glucose as the reference. We found that the gene expression profiles on L-arabinose were dramatically different from those on D-xylose. It appears that L-arabinose can rewire the fungal cell metabolic pathway widely and provoke the expression of many kinds of sugar transporters, hemicellulase genes and transcription factors. In contrast, many fewer genes, mainly related to the pentose metabolic pathway, were upregulated on D-xylose. The rewired metabolic response to L-arabinose was significantly different and wider than that under no carbon conditions, although the carbon starvation response was initiated on L-arabinose. Three novel sugar transporters were identified and characterized for their substrates here, including one glucose transporter GLT-1 (NCU01633) and two novel pentose transporters, XAT-1 (NCU01132), XYT-1 (NCU05627). One transcription factor associated with the regulation of hemicellulase genes, HCR-1 (NCU05064) was also characterized in the present study. CONCLUSIONS We conducted the first transcriptome analysis of Neurospora crassa grown on L-arabinose and performed a comparative analysis with cells grown on D-xylose and D-glucose, which deepens the understanding of the utilization of L-arabinose and D-xylose in filamentous fungi. The dataset generated by this research will be useful for mining target genes for D-xylose and L-arabinose utilization engineering and the novel sugar transportes identified are good targets for pentose untilization and biofuels production. Moreover, hemicellulase production by fungi could be improved by modifying the hemicellulase regulator discovered here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical characterization of an L-Xylulose reductase from Neurospora crassa.

An l-xylulose reductase identified from the genome sequence of the filamentous fungus Neurospora crassa was heterologously expressed in Escherichia coli as a His(6) tag fusion protein, purified, and characterized. The enzyme may be used in the production of xylitol from the major pentose components of hemicellulosic waste, d-xylose and l-arabinose.

متن کامل

MOLECULAR ANALYSIS OF THE SULFUR REGULATORY CIRCUIT OF NEUROSPORA CRASSA

The sulfur regulatory circuit of the filamentous fungus, Neurospora crassa, consists of a set of unlinked structural genes which encode sulfur catabolic and two major regulatory genes which govern their expression. The cys-3 regulatory gene encode a transacting regulatory protein which activates the expression of cys-14 and ars, whereas the other regulatory genes Scon-l and Scon-2 appear to...

متن کامل

Structure and engineering of L-arabinitol 4-dehydrogenase from Neurospora crassa.

L-arabinitol 4-dehydrogenase (LAD) catalyzes the conversion of l-arabinitol into l-xylulose with concomitant NAD(+) reduction. It is an essential enzyme in the development of recombinant organisms that convert l-arabinose into fuels and chemicals using the fungal l-arabinose catabolic pathway. Here we report the crystal structure of LAD from the filamentous fungus Neurospora crassa at 2.6 A res...

متن کامل

Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales

Aspergilli are commonly found in soil and on decaying plant material. D-xylose and L-arabinose are highly abundant components of plant biomass. They are released from polysaccharides by fungi using a set of extracellular enzymes and subsequently converted intracellularly through the pentose catabolic pathway (PCP).In this study, the L-arabinose responsive transcriptional activator (AraR) is ide...

متن کامل

The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae

Background l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important rate-controlling step in the complete conversion of these feedstocks by engineered pentose-metabolizing S. cerevisiae s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014